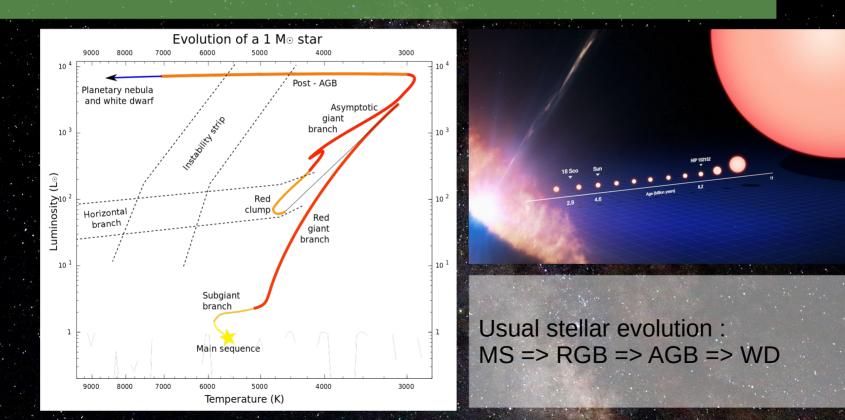
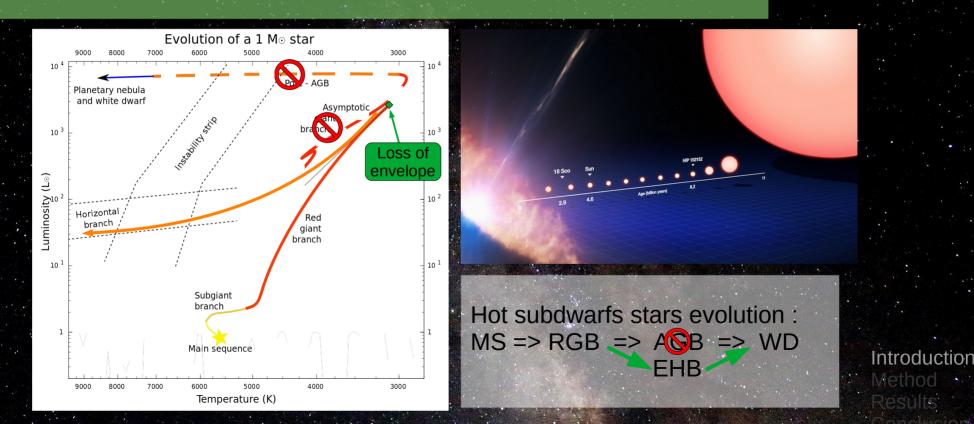


Under supervision of V, Van Grootel, L. Siess and F. Pozuelos


Antoine Thuillier

Probing the consequences of planetary engulfment during the RGB using hot subdwarf stars

23 May 2024


22nd Meeting of the FNRS Contact Group Astronomie & Astrophysique - ROB

Brief recall on stellar evolution

Introduction Method

Hot subdwarfs (sdB)

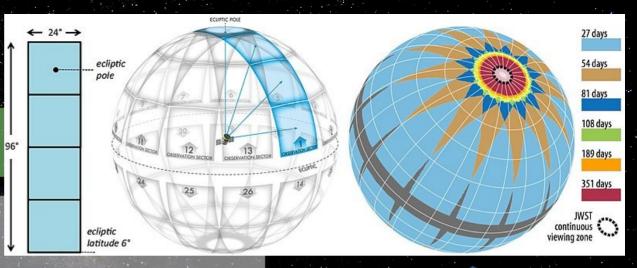
Goals

- Can some close-in planet survive the RGB ?
- Do hot subdwarfs have planets ?
- Can hot subdwarfs be formed through planet-star interactions ?

Introduction

Goals

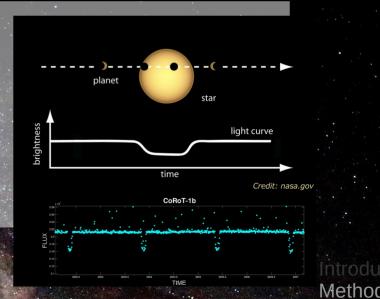
- Can some close-in planet survive the RGB ?
- Do hot subdwarfs have planets ?
- Can hot subdwarfs be formed through planet-star interactions ? Mode
 - Model the interactions


Introduction

Look for planets around sdBs

Data : The TESS mission

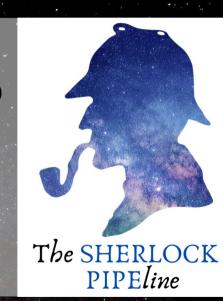
- Launched in 2018 by the NASA
- 4 * Ø 10 cm telescopes
- Large survey of 90% of the sky (cycles, sectors)
- 1302 hot subdwarfs observed (primary mission)


Method

Quick recall : the transit method

Looking for flux drop in star's light curves

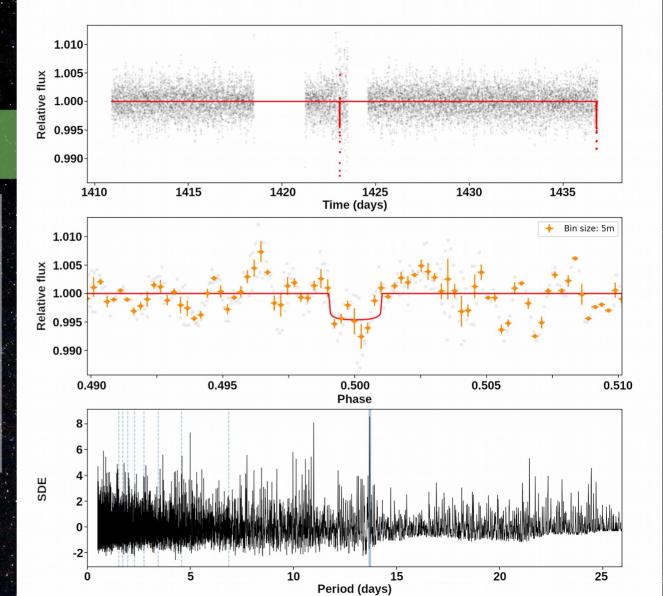
Efficiency depends on:


- (R_{planet} / R_{star})²
- Planet's period

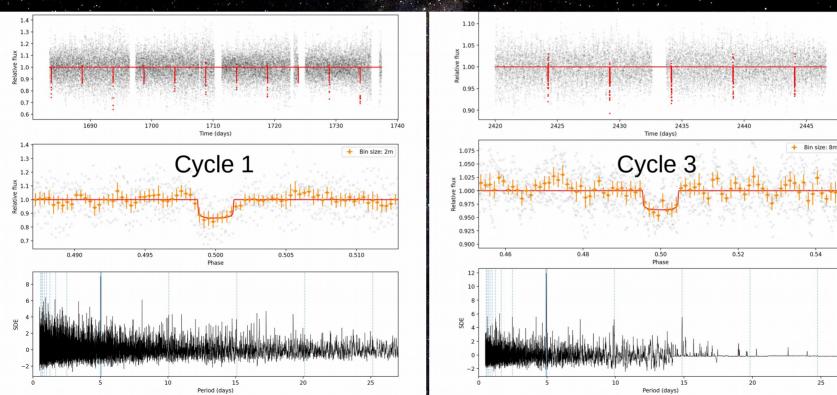
The SHERLOCK PIPEline

Looking for shallow transits with the SHERLOCK PIPEline (Searching for Hints of Exoplanets fRom Lightcurves Of spaCe-based seeKers)

We want to consider a maximum of potential signals => Low SNR threshold => Higher rates of false positives => Need to detect and discard them => Vetting steps



Methoc


Vetting

The numbers look good, the shape... a bit less.

- => Visual check of all results
 - global shape
 - glitches
 - undetected pulsation
 - periodic variations

Vetting

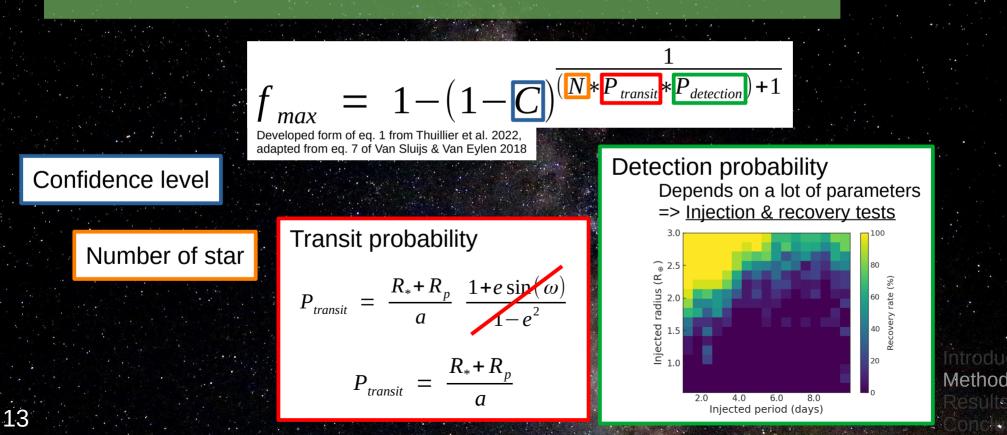
Method

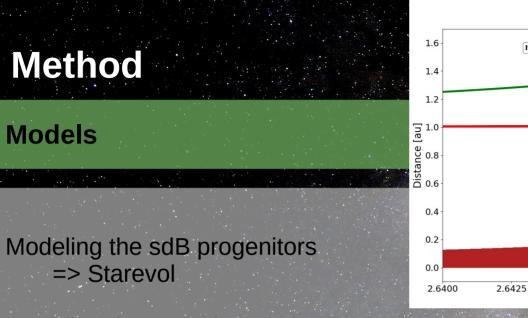
11

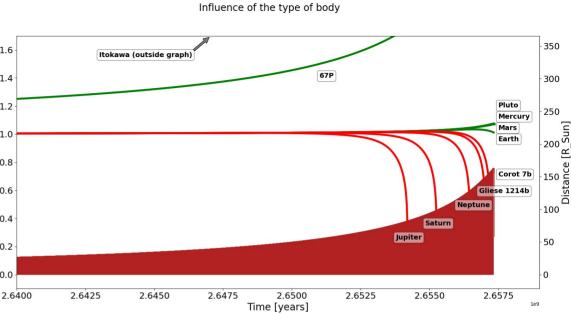
Follow up

TRAPPIST Two Ø60 cm telescopes - La silla, Chile

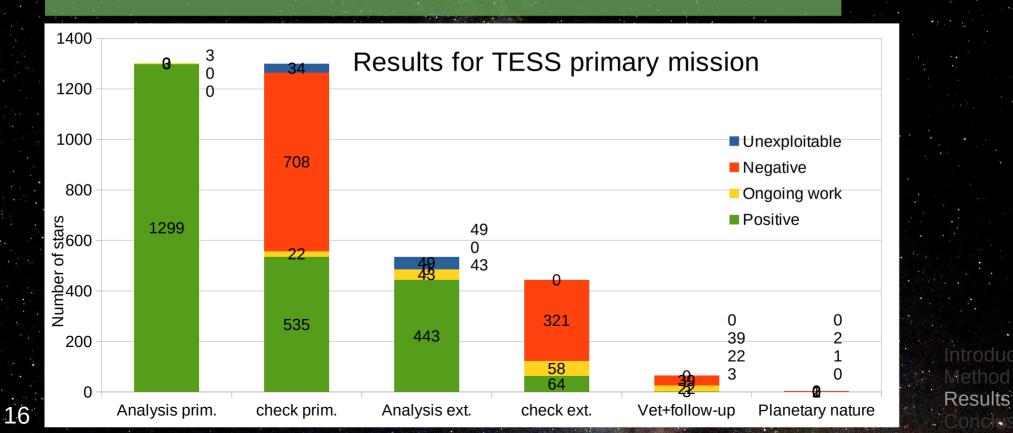
- Oukaïmeden, Moroco


CHEOPS (ESA) Space based mission Ø32 cm telescope



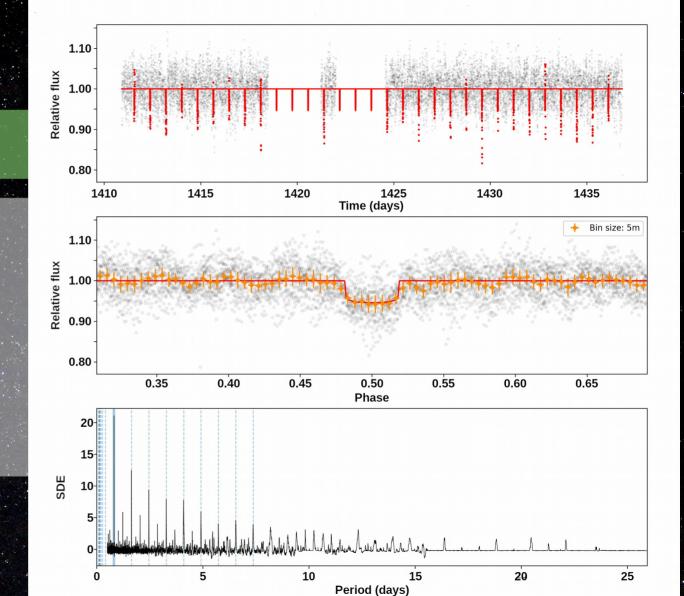

Method

Occurrences



Modeling the evolution of planets parameters through the RGB => Sekhmet

Comparing star's envelope binding energy to the planet's energy.


Observations

False positives

Is this real? or just fantasy?

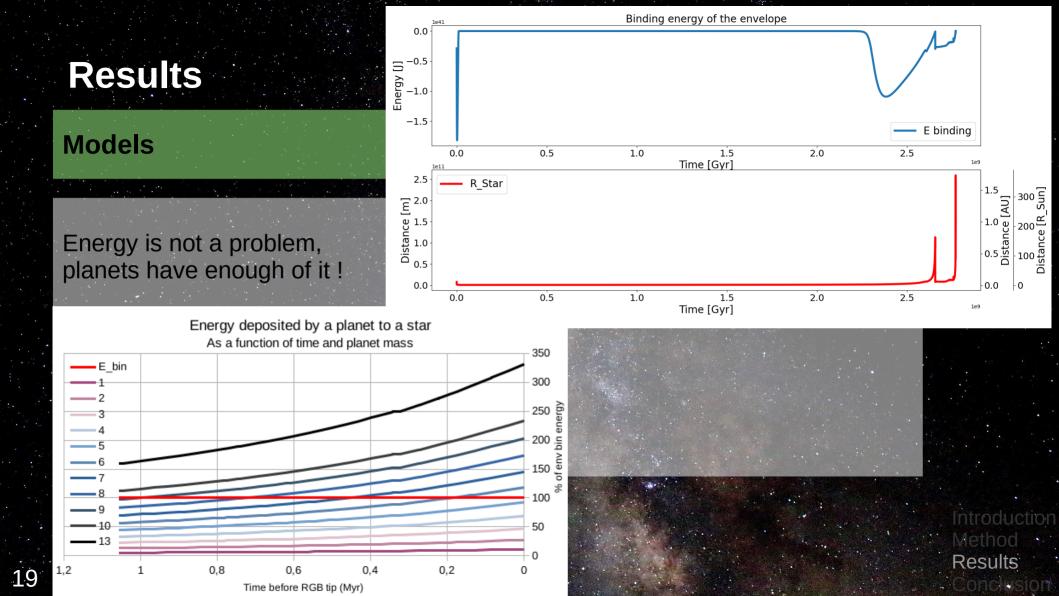
17

Occurrences

Preliminary results from Cycle 1 (549 stars)

Better constraints for:

- bigger planets
- shorter periods

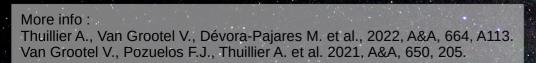

Ex: There is at most ~20% of sdB that have a 2 R_{Earth} planet with a period of 3 days (with 95% confidence).

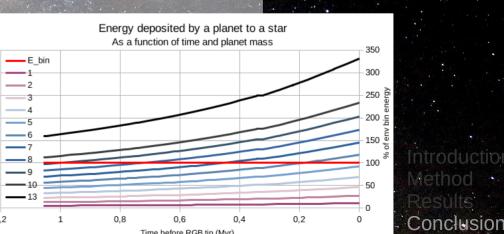
-1.010.5 14.2 16.2 19.0 21.0 22.8 24.3 25.5 26.9 28.9 10.5 14.2 15.9 19.0 21.0 22.8 24.5 25.4 26.8 29.0 9.0 9.0 rate [fraction] 10.6 14.7 16.8 19.6 21.8 23.5 25.4 26.3 27.5 29.5 11.0 14.9 16.4 19.8 22.0 23.8 25.5 26.3 27.3 29.7 2 -11.5 15.0 17.3 20.1 22.3 24.1 25.9 27.0 28.1 31.1 11.5 15.0 17.2 20.0 22.3 24.3 26.5 28.7 30.2 33.5 0.4 11.9 15.4 18.0 21.8 25.0 29.1 33.3 37.2 38.1 48.0 Maximum 13 5 18 8 26 2 34 3 45 3 49 5 57 3 63 4 55 0 65 6 28.2 47.4 50.6 58.6 73.8 76.2 76.8 80.3 74.1 79.7 49.7 59.7 76.6 93.0 87.1 95.0 95.0 95 0 95 0 92 9 0.5 0.0 2 5 Period [days]

Planet radius [R_

arth]

ш




Conclusion

Conclusion

21

- Can some close-in planet survive the RGB ?
- Do hot subdwarfs have planets ?
- Can hot subdwarfs be formed through planet-star interactions ?

Шa

Take home message

- Goals:

- Determine the fate of close-in planets during the RGB.
- Determine whether sdBs have planets.
- Determine whether sdBs can form from planets engulfment.

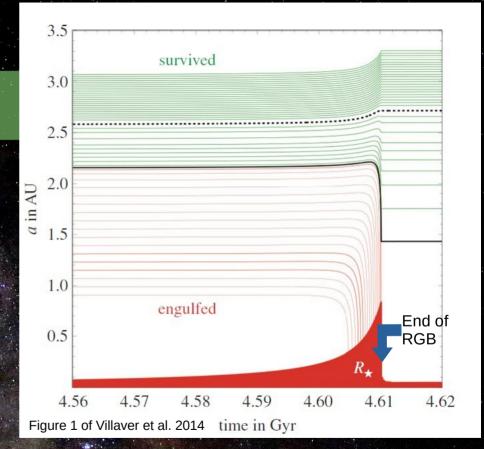
- Method:

- Analyse all sdBs in TESS data to find transits
- Model planet-star interactions

- Results :

- No confirmed planets so far, if sdB have some, it's not much.
- Planets have enough energy to expel envelope.

Thank you for your attention



RGB & substellar bodies

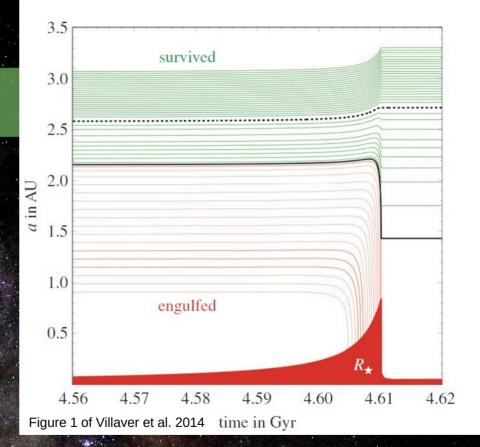
Close to the star : => Destruction and accretion

Far from the star : => Almost unperturbed survival

In-between : => Probably a bit of both

Introduction

RGB & substellar bodies


Close to the star : => Destruction and accretion

Far from the star : => Almost unperturbed survival

In-between :

=> Probably a bit of both

Close orbiting planets after the RGB

Introduction

RGB & substellar bodies

Close to the star :

=> Destruction and accretion

Far from the star : => Almost unperturbed survival

In-between :

=> Probably a bit of both

Close orbiting planets after the RGB

Materials can form 2nd gen. planets

Introduction

Resul

RGB & substellar bodies

Close to the star :

=> Destruction and accretion

Far from the star : => Almost unperturbed survival

In-between :

=> Probably a bit of both

Close orbiting planets after the RGB

Materials can form 2nd gen. planets

Can migrate in the system

Introduction

8

RGB & substellar bodies

Close to the star :

=> Destruction and accretion

Far from the star : => Almost unperturbed survival

In-between :

=> Probably a bit of both

Close orbiting planets after the RGB

Materials can form 2nd gen. planets

Can migrate in the system

Introduction

RGB & substellar bodies

Close to the star :

=> Destruction and accretion

Far from the star : => Almost unperturbed survival

In-between :

=> Probably a bit of both

Close orbiting planets after the RGB

Materials can form 2nd gen. planets

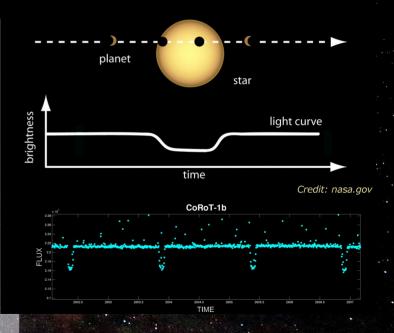
Can migrate in the system

SdB's lifetime : ~100 Myr

Possible but very unlikely for sdB given their short lifetime

Introduction

Resuli


Transit method

The depth of a transit depends on the ratio between the star's radius and the transiting body radius

$$Depth = \frac{R_{Planet}^2}{R_{Star}^2}$$

Probability of transit is fully determined by geometry

$$p_{transit} = \left(\frac{R_{Star} + R_{Planet}}{a}\right) \frac{1 + e\sin(\omega)}{1 - e^2}$$

Transit : NASA, https://svs.gsfc.nasa.gov/30558

Transit method

Geometric transit probability

25 0.2500 Transit depth for a 0.15 R Sun star 60 0.2000 20 Jupiter depth 50 _____a [UA] 15 0,1500 40 Transit depth [%] P transit % [UA] 30 10 0.1000 20 Neptune Earth 5 0.0500 10 0 0,0000 10 0 2 6 8 0 12 0 2 6 8 10 12 14 16 Transiting planet radius [R_Earth] T [days] Own work Own work For 0.15 R Sun, 0.5 M Sun star: For 0.15 R Sun, 0.5 M Sun star: 0.1 2 200 1600 (4.3 yr) 2 T [days] 10 50 518 (1.4 yr) R planet [R Earth] 0.5 1 3.9 7 11.2 0.53 1.5 5.7 18.2 a [AU] 0.0035 0.025 0.072 0.21 2.1 Depth [%] 0.1 0.4 46.7 1 P geo [%] ~21 ~3 ~1 0.36 0.14 0.075 0.036 Equivalent Earth Neptune Jupiter

Transit depth

Thresholds

Signal to noise ratio (SNR) > 6

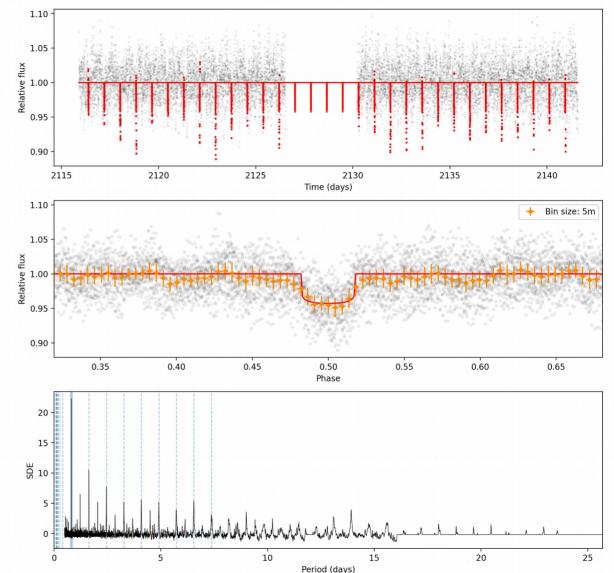
$$SNR = \frac{\text{Signal depth}}{\text{White noise}}$$

Signal Detection Efficiency (SDE) > 8

$$SDE = \frac{1 - \langle SR \rangle}{\sigma(SR)}$$

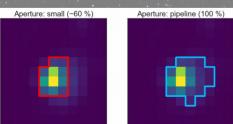
SR : Signal residue for a tested period σ : standard deviation

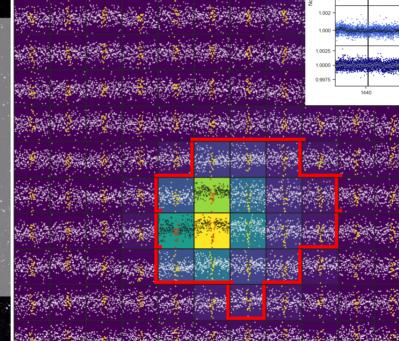
SHERLOCK positive

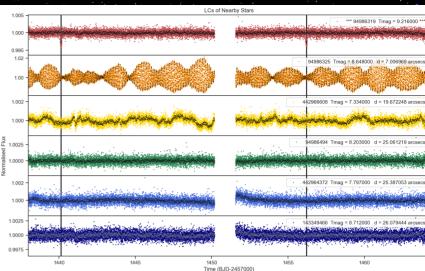

Quantifiers: SNR, SDE

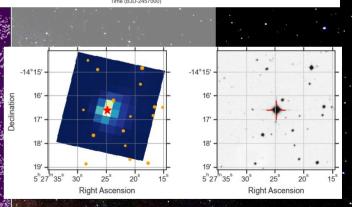
.

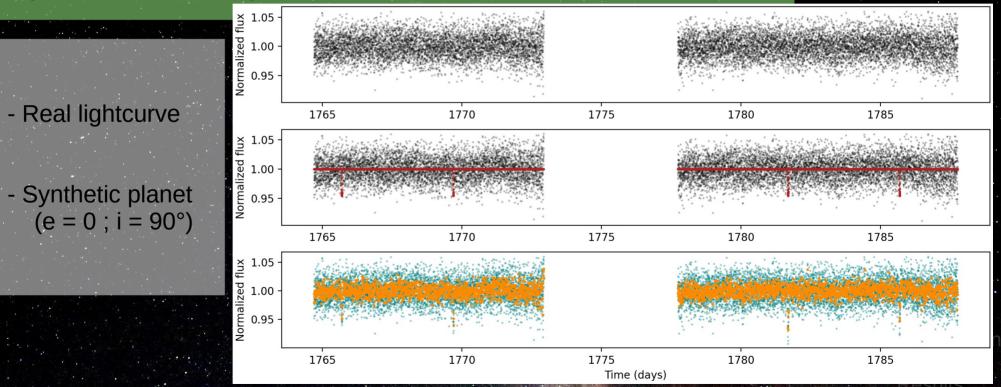
Main parameters: Period, depth, duration visual aspect, harmonics

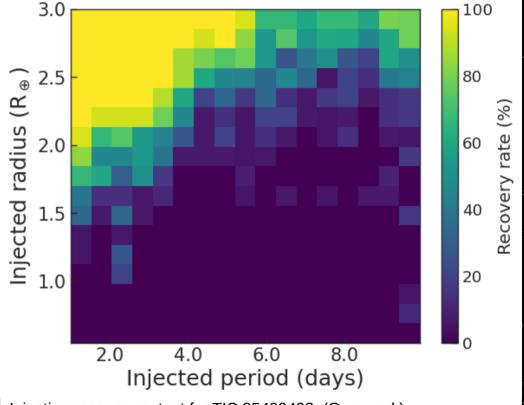

0.82~days signal on TIC 397833009. Main star is likely a sdF and the transiting body a BHB star


Run 1# win_size:0.7008 # P=0.82d # T0=2116.38 # Depth=41.8958ppt # Dur=43m # SNR:38.58 # SDE:22.26 # FAP:0.000080

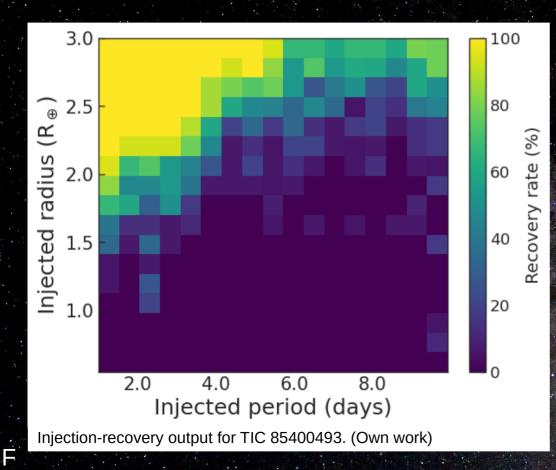

Vetting


- Backgroung check
- Close bright stars
- Close star variability
- Aperture check
- Pixel comparation





Injection & recovery tests

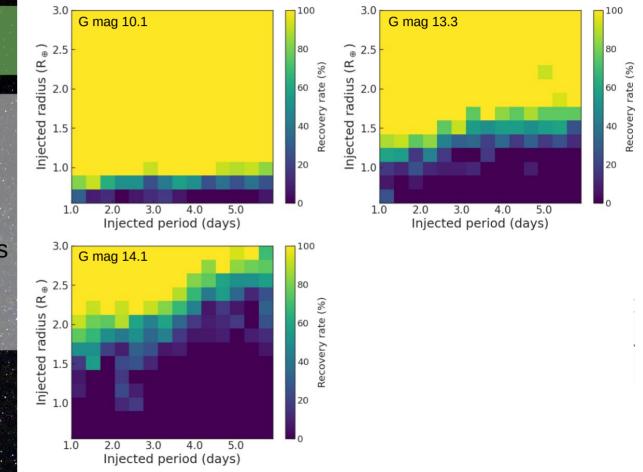

Injection & recovery tests

- Inject a synthetic planet
- Detrend the lightcurve
- Try to recover the signal
- Repeat varying radius and period
- Compute the recovery rate

Injection-recovery output for TIC 85400493. (Own work)

Injection & recovery tests longer periods

Table 3. Minimum size of planets in units of R_{\oplus} that can be detected in typical light curves with a $\gtrsim 90\%$ recovery rate.

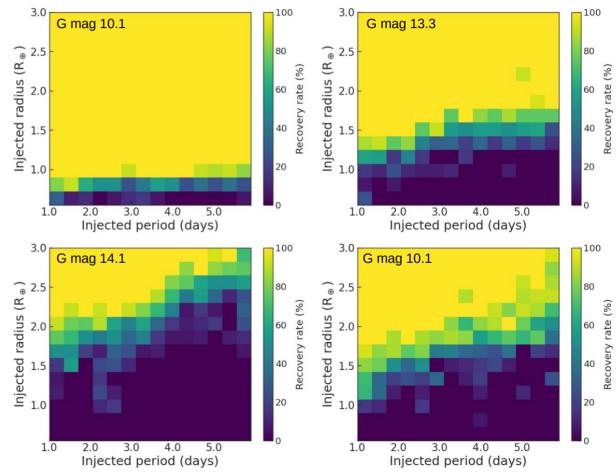

Object ID	G Mag	Data length (d)	1 d	5 d	15 d	25 d	35 d
Kepler							
8054179	14.3	90	0.3	0.5	0.8	1.0	1.2
		30	0.5	0.6	1.0	_	_
3353239	15.2	30	0.6	0.8	1.1	_	_
5938349	16.1	30	0.7	1.1	2.0	_	_
8889318	17.2	30	0.9	1.2	2.4	_	_
5342213	17.7	30	1.2	1.7	3.2	-	-
K2							
206535752	14.1	80	0.6	0.8	1.0	1.5	2.1
		30	0.6	0.9	1.6	_	_
211421561	14.9	30	0.7	1.4	1.9	_	_
228682488	16.0	30	1.0	1.4	2.5	_	_
251457058	17.1	30	1.4	2.3	3.4	_	_
248840987	18.1	30	2.1	3.3	5.4	-	-
TESS							
147283842	10.1	27	0.5	0.7	1.5	_	_
362103375	13.0	27	1.0	1.7	2.0	_	_
		162	0.7	0.8	0.9	1.0	1.3
096949372	13.0	27	1.1	1.8	2.0	_	_
441713413	13.1	27	1.3	1.7	2.0	_	_
		54	1.3	1.7	1.9	>10	>10
085400193	14.1	27	1.8	2.3	2.8	_	_
220513363	14.1	27	1.6	1.8	2.7	_	_
		81	1.3	1.6	2.5	3.0	3.0
000008842	15.0	27	2.7	3.2	4.7	_	-

Notes. All stars have $0.175 \pm 0.025 R_{\odot}$ and $0.47 \pm 0.03 M_{\odot}$.

Injection & recovery tests

- Detection capability 1 R_Earth: exceptional
- Magnitudes (G mag) G mag in 12-15=90% targets
- Other parameters

26

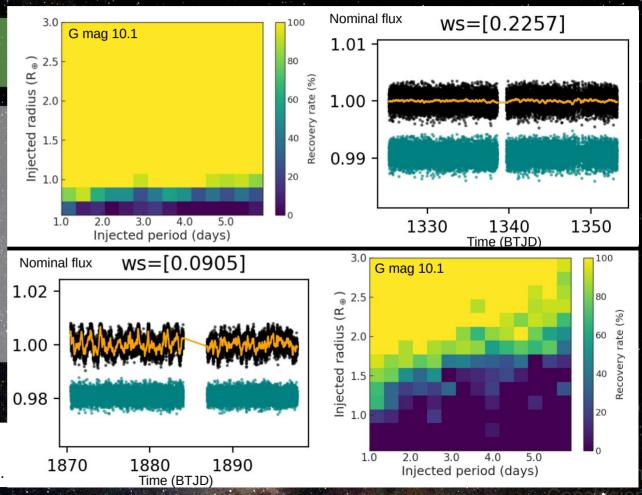


Injection-recovery test for four different hot subdwarfs. From my master thesis.

Injection & recovery tests

- Detection capability 1 R_Earth: exceptional
- Magnitudes (G mag) G mag in 12-15=90% targets
- Other parameters

26



Injection-recovery test for four different hot subdwarfs. From my master thesis.

Injection & recovery tests

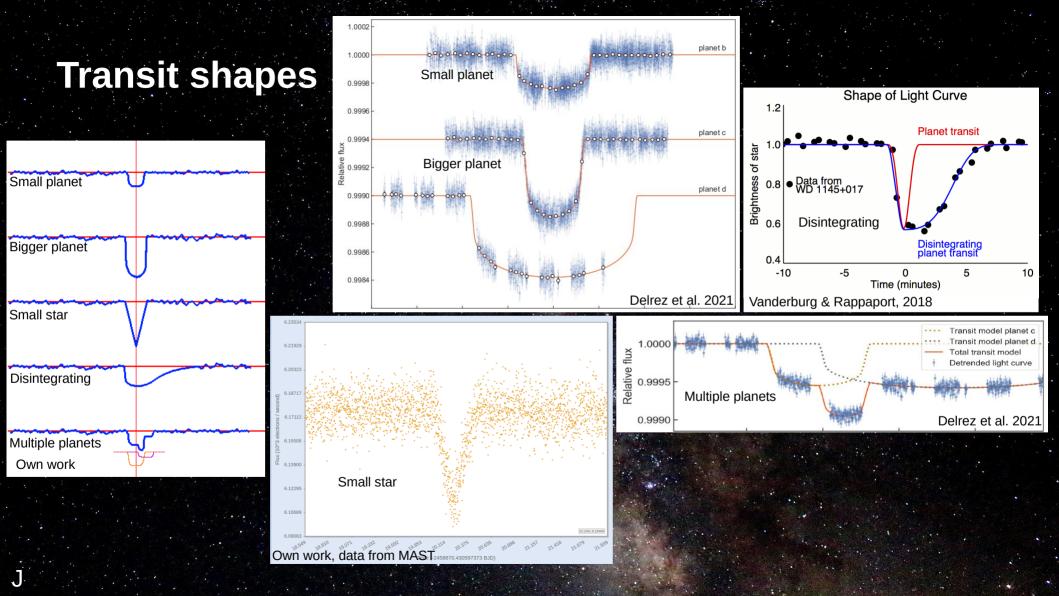
Ligth curve aspects

- Calm and 'stormy' aspects
- Improvements for known pulsative stars

Lightcurves and injection-recovery test for TIC 147283842 and TIC 372681399. From my master thesis.

Mission description

Kepler/K2 (2009-2013 / 2014-2018) NASA Survey focused on a part of the sky (Kepler) Survey on the ecliptic plan (K2) Ø : 95cm Launch mass : 1039kg

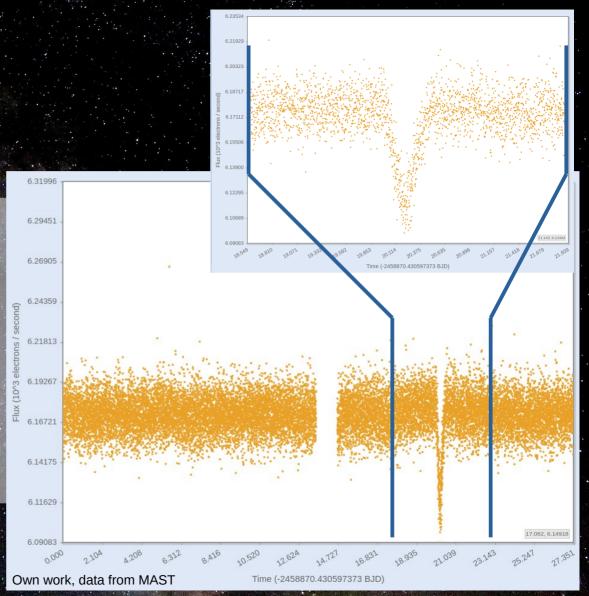

TESS (2018-?) NASA Large survey of 90% of the sky Ø : 10cm * 4 Launch mass : 350kg

CHEOPS (2019-?) ESA

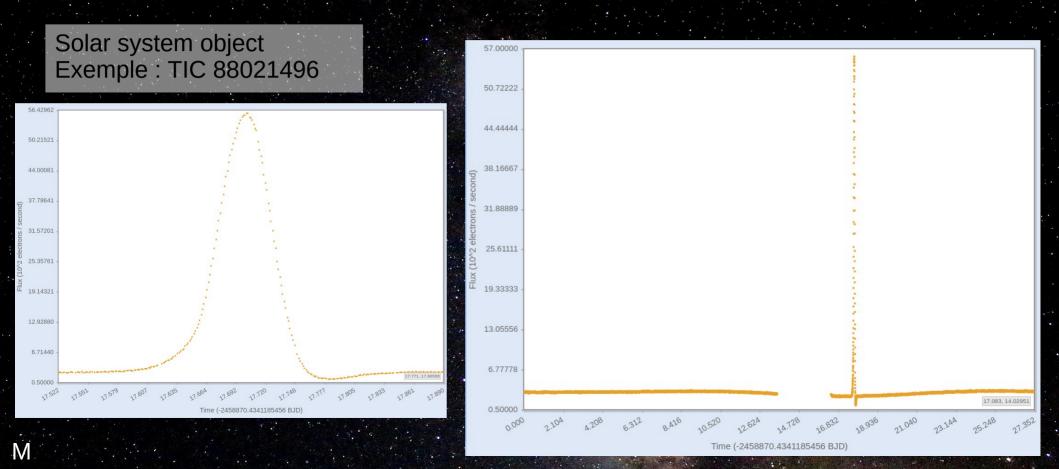
Characterization of already discovered exoplanets

Ø:32cm

Launch mass : 273kg



Single events


>= 2 transits needed to get the period

but some single transit are in the data.

Exemple : TIC 156458527 Cycle 2, 5 sectors, 1 event.

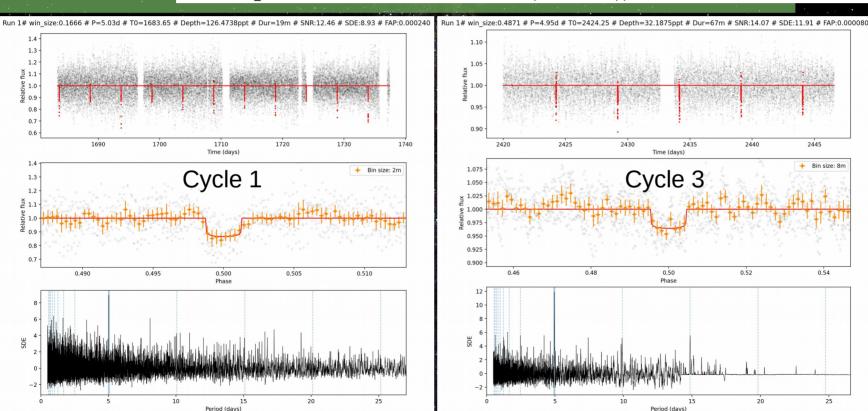
Perturbating events

Vetting

N1

Run 1# win size:0.1666 # P=5.03d # T0=1683.65 # Depth=126.4738ppt # Dur=19m # SNR:12.46 # SDE:8.93 # FAP:0.000240

Run 1# win size:0.4871 # P=4.95d # T0=2424.25 # Depth=32.1875ppt # Dur=67m # SNR:14.07 # SDE:11.91 # FAP:0.000080


2445

Bin size:

0.54

25

ntrodu Method

Credits

Background : Milky Way and Sagittarius : User Alpsdake on wikimedia https://commons.wikimedia.org/wiki/File:Milky_Way_and_Sagittarius.JPG

Slide 2 : Stellar evolution (HR diagram) : User Lithopsian on wikimedia https://upload.wikimedia.org/wikipedia/commons/thumb/a/a1/ Evolutionary_track_1m.svg/1166px-Evolutionary_track_1m.svg.png

Slide 2 : Artist view of Sun expansion : ESO https://www.eso.org/public/images/eso1337a/

Slide 3 : Fate of planets during the RGB : Figure 1 of Villaver et al. 2014

Slide 5 : Same as Slide 2

Slide 6 : Stellar evolution of sdOB stars (HR diagram) : own work, adapted from user Lithopsian on wikimedia (see Slide 2)

Slide 8 : Same as Slide 3

Slide 9 : Artist view of TESS : NASA https://en.wikipedia.org/wiki/File:Transiting_Exoplanet_Survey_Satellite _artist_concept_(transparent_background).png

Slide 9 : TESS field of view, sectors and cycles : NASA https://commons.wikimedia.org/wiki/File:TESS_science_sector_ suddivision-fr.png?uselang=fr

Slide 11 : Transit of Mercury : Solar and Heliospheric Observatory/NASA/ESA https://mars.nasa.gov/allaboutmars/nightsky/rover-astronomy/mercurytransit-mars/ Slide 11 : Transit of Corot-1b : NASA : https://svs.gsfc.nasa.gov/30558

Slide 12 : Sherlock logo https://github.com/franpoz/SHERLOCK

Slide 13a : Detrending : Own work from Sherlock output

Slide 13b : Time mask : Own work

Slide 13c : RMS mask : Own wrok from Sherlock output

Slide 13d : Pre-whitening : Own work using the FELIX code (S.Charpinet)

Slide 13e : SG filter : Own work, adapted from user Cdang on wikimedia https://commons.wikimedia.org/wiki/File:Lissage_sg3_anim.gif?uselang=fr

Slide 15 Visual vetting : Own work, from Sherlock output

Slide 16 Comparison cycle 1 - cycle 3 : Own work, from Sherlock output

Slide 17 : Vetting LATTE : Nora Eisner https://github.com/noraeisner/LATTE

Slide 18a : Watson logo https://github.com/PlanetHunters/watson

Slide 18b, 18c, 18d : Vetting Watson : Own work from Watson output

Slide 19 : Corner plot : Own work from Sherlock output

Credits

Slide 20 : TESS field of view (pixel maps) : Own work from Sherlock output

Slide 20 : TRAPPIST field of view : good question

Slide 21 : Schedulling : Own work from Sherlock output

Slide 22 : CHEOPS : ESA https://sci.esa.int/web/cheops/-/54127-artist-s-impression-of-thecharacterising-exoplanet-satellite-cheops--front-view

Slide 22 : TRAPPIST north (top) and south (bottom) : good question again

Slide 23 : Injection & recovery tests : Own work, with an adaptation of a code provided by Francisco Pozuelos

Slide 24 : Model of injection : Provided by F. Pozuelos

Slide 25, 26 : Same as Slide 23

Slide 27 : Light curve aspects : Own work from injection and recovery tests and Sherlock output

Slide 28 : Position of targets from TESS cycle 1 : Own work, with an adaptation of a code provided by Francisco Pozuelos

Slide 29a : Transit : Own work from Sherlock output

Slide 29b : White dwarf :

77

Slide 29b : Brown dwarf : R. Hurt/NASA https://commons.wikimedia.org/wiki/File:L-dwarf-nasa-hurt.png?uselang=fr Slide 20 : TESS field of view (pixel maps) : Own work from Sherlock output

Slide 20 : TRAPPIST field of view : good question

Slide 21 : Schedulling : Own work from Sherlock output

Slide 22 : CHEOPS : ESA

https://sci.esa.int/web/cheops/-/54127-artist-s-impression-of-thecharacterising-exoplanet-satellite-cheops--front-view

Slide 22 : TRAPPIST north (top) and south (bottom) : good question again

Slide 23 : Injection & recovery tests : Own work, with an adaptation of a code provided by Francisco Pozuelos

Slide 24 : Model of injection : Provided by F. Pozuelos

Slide 25, 26 : Same as Slide 23

Slide 27 : Light curve aspects : Own work from injection and recovery tests and Sherlock output

Slide 28 Position of targets from TESS cycle 1 : Own work, with an adaptation of a code provided by Francisco Pozuelos

Slide 29a Transit : Own work from Sherlock output

Slide 29b : White dwarf :

Slide 29b . Brown dwarf : R. Hurt/NASA https://commons.wikimedia.org/wiki/File:L-dwarf-nasa-hurt.png?uselang=fr

Roche limit : Shoemaker-Levy 9 comet disrupted by Jupiter https://hubblesite.org/contents/news-releases/1994/news-1994-26.html