

FORMING MERGING DOUBLE COMPACT OBJECTS WITH STABLE MASS TRANSFER

Annachiara Picco, Pablo Marchant, Hugues Sana, Gijs Nelemans

STABLE MASS TRANSFER

COMMON ENVELOPE

STABLE MASS TRANSFER

COMMON ENVELOPE

Efficiently tightens the orbit Can produce LVK-like mass ratios $lpha_{CE}$ is assumed, uncertain

STABLE MASS TRANSFER

 $\left|\frac{P_0}{P} = \frac{P_0}{P}(q_0, \gamma, conservativeness)\right|$

COMMON ENVELOPE

Efficiently tightens the orbit Can produce LVK-like mass ratios $lpha_{CE}$ is assumed, uncertain

STABLE MASS TRANSFER

Conservativeness is a free parameter of the theory

BOTH CHANNELS ARE VIABLE WAYS to GRAVITATIONAL WAVES SOURCES !

THE SIMPLEST STABILITY CRITERION for POPULATION SYNTHESIS CODES

THE SIMPLEST STABILITY CRITERION for POPULATION SYNTHESIS CODES

THE SIMPLEST STABILITY CRITERION for POPULATION SYNTHESIS CODES

THE SIMPLEST STABILITY CRITERION for POPULATION SYNTHESIS CODES

KU LEUVEN

DETAILED SINGLE STARS MODELS of UNSTABLE MASS LOSS

DETAILED SINGLE STARS MODELS of UNSTABLE MASS LOSS

DETAILED SINGLE STARS MODELS of UNSTABLE MASS LOSS

REFINED STABILITY CRITERION with DETAILED SINGLE STARS MODELS

REFINED STABILITY CRITERION with DETAILED SINGLE STARS MODELS

KU LEUVEN

REFINED STABILITY CRITERION with DETAILED SINGLE STARS MODELS

SEMI-ANALYTICAL

$$\zeta_{crit} \stackrel{!}{=} \zeta_{RL}(q, non \, conservative) \\ \Leftrightarrow q = q_{crit}$$

MERGING DOUBLE BHs!

MERGING DOUBLE BHs!

fixed $Z = Z_{\odot}/10$

 $\alpha_{\rm overshooting}$

MESA models

fixed $Z = Z_{\odot}/10$ $\alpha_{overshooting}$ CONSERVATIVENESS determined by EDDINGTON LIMIT

MESA models

Impact of the overshooting parameter

RATIO of CORE TO ENVELOPE MASS

From calibrations, usually assumed fixed to $\alpha_{overshooting}$ =0.335

MESA models

CONSERVATIVENESS determined by EDDINGTON LIMIT

$$m_{donor} = 30 M_{\odot}$$

NO MASS is accreted

Impact of the overshooting parameter

MESA models

Impact of the overshooting parameter

 $m_{donor} = 30 M_{\odot}$

SUMMARY

Your boundaries matter...

The stability criterion determines the parameter space for merging **CO+CO** from stable MT

... and they shift!

Behind critical mass ratios from detailed models there is fixed input physics and assumptions, and they are influential

<u>Future work</u>:

Full grid detailed models to try and build a reliable stability criterion independent on these uncertainties

KU LEUVEN

Thanks for the attention!

MERGING DOUBLE COs: BNS, BBH!

 $\beta = 1$

w D + w D

